
COMP26020 QRS Page 1 of 2 

COMP26020 Programming Languages and Paradigms (70) 
Programming Paradigm defines a fundamental style of programming (how programmer write as well as 
data and computations). Can be used to classify programming languages. Some paradigms are (much) 
better suited than others to solve a given kind of software engineering problem. 

Imperative Paradigm describes sequence of statements manipulating the program state. Assembly is 
unstructured, while most modern languages are structured and have loops, conditionals, and procedures. 

Declarative Paradigm asks programmer describes the meaning/result of computations. Declarative 
Functional calls and compose functions to describes the program, have first-class functions, use and pure 
functions have no side-effects. 

First-class Function is a function that can be passed as parameter to other functions, and returned from 
other functions. 

A language must have at least one paradigm, while many languages are multi-paradigm. 

Static Initialisation uses braces. Something like ms m = {4, 2}; 

Preprocessor is called in general under the hood by the compiler and works on source files, performing 
textual transformations and producing source files as output. This is done before the actual compilation 
phase. 

System Call Number is stored in register %rax 
Parameters to the system call are stored in %rdi, %rsi, and %rdx in this order. 
Return Value of a system call is placed in %rax. 

Double Exclamation Mark Operator (!!) in Haskell is used to access the element at a specified index of a 
list or a tuple. 

Strictness of an Argument in Haskell refers to whether or not the argument is evaluated before it is used 
by the function. A strict argument is evaluated before it is used, while a lazy argument is not evaluated 
until it is needed. It can be specified by the programmer using the ! operator, or can be inferred by 
compiler if value is being used in calculation. 

>> Operator is used to sequence two computations, but would discard the return value. 
>>= Operator is used to bind two computations, and would pass the return value as an argument. 

Do Statement can connect a lot of computations in lines, but to have a local variable it would be n<-value. 

Ambiguity exists if a grammar produces more than one parse tree for some sentence, or has more than 
one leftmost / rightmost derivation for a single sentential form. 

Top-Down Parsing begins with the starting symbol of the grammar (parse tree root), and repeat until the 
input string has been (fully) matched. 

LL(1) Property means parser can look ahead one symbol in the input stream to determine the next 
production to use. It is a top-down parsing approach. 
LR(1) Grammar (i) isolate the handle of each right-sentential form, and (ii) determine the production by 
which to reduce, by scanning the sentential form from left-to-right, going at most 1 symbol beyond the 
right-end of the handle. It is a bottom-up parsing approach. 

Reduce is the action that would change the format of the rightmost elements to the higher form. 
Shift happens when there is no reduce to do, and push the next element to the stack of elements. 
ACTION-GOTO Table is a reference tool used by LR(1) parsers. It first preforms the ACTIONS based on the 
next elements, or use GOTO. 



COMP26020 QRS Page 2 of 2 

Thomspon's Construction is a method transform regular 
expressions into equivalent nondeterministic finite automata. 
Subset Construction is a standard method for converting a NFA 
into a deterministic finite automaton (DFA). 
Hopcroft Algorithm is used in compilers to minimize DFAs by 
iteratively merging states in a DFA that are indistinguishable. It 
merges two states each time. 

Common subexpression elimination: An expression, say x+y, is redundant iff along every path from the 
procedure’s entry it has been evaluated and its constituent subexpressions (x, y) have not been redefined. 
Copy propagation: After a ‘copy’ statement, x=y, try to use y as far as possible. 
Constant propagation: Replace variables that have constant values with these values. 
Constant folding: Deduce that a value is constant, and use the constant instead. 
Dead-code elimination: A value is computed but never used; or, there is code in a branch never taken (may 
result after constant folding). 
Reduction in strength: Replace an expensive operation with a cheaper operation 
Loop-invariant code-motion: Detect statements inside a loop whose operands are constant or have all 
their definitions outside the loop - move out of the loop. 

Basic Block is a segment of straight-line (i.e., branch-free) code. 
Interference exists when two values are simultaneously live when an operation occurs. 

Top-down Register Allocation reserve registers for the most frequently used values. All other values are 
loaded from / stored to memory when needed. Sometimes value may not be active in all segments of code. 
Bottom-up register allocation (Best’s algorithm) keeps a pool of registers; assign one register when a 
value is initialised (start of the live range); return register to the pool at the end of the live range. 
Register Allocation via Graph Colouring construct live ranges, build interference graph, and try to 
construct a k-colouring of the graph and then map to physical registers. 
Instruction Scheduling is completed by building precedence 
graph, compute priority function for the nodes, and then use 
list scheduling to construct a schedule by pop out a ready 
operation and schedule it. 
Sethi-Ullman Labelling Scheme assigns labels to the nodes of 
an AST to determine the minimum number of registers 
required to evaluate the expression represented by the AST, 
from leaves to root. 
Short-Circuit Evaluation is a technique used by compilers to 
evaluate Boolean expressions - only evaluates the parts of the 
expression that are necessary to determine the overall value of the expression. 

Concurrency is running parts of the same computation at the same time. It breaks our assumptions about 
how code works, especially atomicity and ordering. 

Deadlock: A cycle of processes where all wait for the next process in the cycle to leave a critical section. 
Livelock: A cycle of processes where all try to enter a critical section but they all fail. 
Starvation: One or more process cannot progress because they need a resource that they cannot acquire 

 


	COMP26020 Programming Languages and Paradigms (70)

